Given a ridge regression variant function where $y \in \mathbf{R^n}, s \in \mathbf{R^d}, X \in \mathbf{R^{dxn}}$ and $C$ a regularization parameter $\in \mathbf{R}$
$w_{crr}= \frac{1}{2}||w||^2 +C||y - w^T.X||^2 + (s^Tw)^2$
$w_{rr}= \frac{1}{2}||w||^2 +C||y - w^T.X||^2 $
How is this function differs geometrically than basic ridge regression function? and how will it affect the optimization process?