I am currently running a series of zero-inflated negative binomial models on the impact of the magnitude and direction of change in various weather parameters on a number of insect behaviours (represented as counts of the number of times the behaviour is recorded in a set period of time following exposure). My current model is examining fecundity as below. The random effects are both categorical and correspond to the day on which the behaviour was recorded and the rearing conditions of the males in the lab.
model2<-glmmTMB(No.eggs.laid~Change.6hrs*Direction.6hrs + (1|Day) + (1|Sex.ratio.line.male), family = "nbinom1",ziformula = ~Change.6hrs*Direction.6hrs + (1|Day) + (1|Sex.ratio.line.male), data = charlotte.egg)
Here is the summary output of my model:
Family: nbinom1 ( log )
Formula:
No.eggs.laid ~ Change.6hrs * Direction.6hrs + (1 | Day) + (1 |
Sex.ratio.line.male)
Zero inflation:
~Change.6hrs * Direction.6hrs + (1 | Day) + (1 | Sex.ratio.line.male)
Data: charlotte.egg
AIC BIC logLik deviance df.resid
2980.0 3033.3 -1477.0 2954.0 430
Random effects:
Conditional model:
Groups Name Variance Std.Dev.
Day (Intercept) 1.316e-02 1.147e-01
Sex.ratio.line.male (Intercept) 8.032e-10 2.834e-05
Number of obs: 443, groups: Day, 7; Sex.ratio.line.male, 10
Zero-inflation model:
Groups Name Variance Std.Dev.
Day (Intercept) 0.58920 0.7676
Sex.ratio.line.male (Intercept) 0.01893 0.1376
Number of obs: 443, groups: Day, 7; Sex.ratio.line.male, 10
Overdispersion parameter for nbinom1 family (): 5.42
Conditional model:
Estimate Std. Error z value
(Intercept) 2.92753 0.11709 25.003
Change.6hrs -0.26768 0.12984 -2.062
Direction.6hrsIncrease -0.06377 0.13621 -0.468
Change.6hrs:Direction.6hrsIncrease 0.23991 0.15250 1.573
Pr(>|z|)
(Intercept) <2e-16 ***
Change.6hrs 0.0392 *
Direction.6hrsIncrease 0.6397
Change.6hrs:Direction.6hrsIncrease 0.1157
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
Zero-inflation model:
Estimate Std. Error z value
(Intercept) -0.9118 0.6278 -1.452
Change.6hrs -2.9058 1.3911 -2.089
Direction.6hrsIncrease -0.8555 0.6355 -1.346
Change.6hrs:Direction.6hrsIncrease 3.3083 1.4543 2.275
Pr(>|z|)
(Intercept) 0.1464
Change.6hrs 0.0367 *
Direction.6hrsIncrease 0.1783
Change.6hrs:Direction.6hrsIncrease 0.0229 *
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
I have a few questions with regards to the output of this model:
- What does the zero-inflation model actually represent?
- Are these p-values sufficient in interpreting the model or do further statistical tests of significance need to be completed in order to infer relationships between variables?
- With this type of model how would you go about determining the significance of the random effects? With non-zero inflated models I am able to do this by using the anova() function to compare a model with and without a particular random effect however when I tried to do this only one p-value is generated. As such I am not sure if this pertains to either the conditional or the zero-inflation model.