Let $X_1, X_2,..., X_n$ be a sample of size n from the PMF $$P_N(x) = {1 \over N},\ \ \ \ \ \ \ \ \ x = 1,2,...,N;N \in \mathbb{N} $$
Show that $$ \varphi(x_1, x_2, ..., x_n) = \begin{cases} 1 & x_{(n)} > N_0 \text{ or } x_{(n)} \leq α^{{1 \over n}}N_0 \\ 0 & \text{otherwise} \end{cases} $$ is a UMP size $α$ test of $H'_0 : N = N_0$ against $H'_1 : N = N_0$.
Work from my side:
- Proved that $P_N(X)$ has Monotone Likelihood ratio in statistic $T(x) = \max(x_1, x_2, ..., x_n) = x_{(n)}$
- Proved that the following test $$ \varphi(x_1, x_2, ..., x_n) = \begin{cases} 1 & x_{(n)} > N_0 \\ \alpha & x_{(n)} \leq N_0 \end{cases} $$ is UMP size α for testing for $H_0 : N ≤ N_0 \text{ against } H_1 : N > N_0$.