I have two variables X and Y. X is continuos and Y is a factor (0,1). Individual regresions for each variables gives the following significant results in terms of increase of mortailty:
coxph(formula = Surv(SUPERV, STATUS) ~ X)
n= 50, number of events= 30
coef exp(coef) se(coef) z Pr(>|z|)
X 0.5391 1.7144 0.2386 2.26 0.0239 *
and,
Call:
coxph(formula = Surv(SUPERV, STATUS) ~ Y)
n= 50, number of events= 30
coef exp(coef) se(coef) z Pr(>|z|)
Y 1.2457 3.4754 0.4199 2.967 0.00301 **
However, when on a multiple regression the X variable loses its significance:
coxph(formula = Surv(SUPERV, STATUS) ~ X + Y)
n= 50, number of events= 30
coef exp(coef) se(coef) z Pr(>|z|)
X 0.3110 1.3648 0.2733 1.138 0.2550
Y1 0.9747 2.6505 0.4628 2.106 0.0352 *
And, when I add the interaction term X:Y nothing is significant:
Call:
coxph(formula = Surv(SUPERV, STATUS) ~ X+Y+X:Y)
n= 50, number of events= 30
coef exp(coef) se(coef) z Pr(>|z|)
X 0.4418 1.5555 0.3517 1.256 0.209
Y1 1.9000 6.6860 1.4907 1.275 0.202
X:Y1 -0.3771 0.6858 0.5804 -0.650 0.516
But if I study only the interaction term it is significant:
Call:
coxph(formula = Surv(SUPERV, STATUS) ~ X:Y)
n= 50, number of events= 30
coef exp(coef) se(coef) z Pr(>|z|)
X:Y0 0.2604 1.2975 0.2873 0.907 0.3646
X:Y1 0.5805 1.7869 0.2327 2.494 0.0126 *
I do not understand how to interpret the lack or increase of significance when interactions are considered. Why the adding Y to the regression X loses its significance? Why the regression of the interaction is significant ~X:Y but no X+Y+X:Y?