I am working on some problems in All of statistics by Wasserman, and I am not quite sure how to tackle this problem.
Suppose you are given data $(X_1, Y_1), \dots, (X_n, Y_n)$ from an observational study where $X_i \in \{0, 1\}$ and $Y_i \in \{0, 1\}$. Although it is not possible to estimate the causal effect $\theta$, it is possible to put bounds on $\theta$. Find the upper and lower bounds on $\theta$ that can be consistently estimated from the data.
The hint says to use $\mathbb{E}(C_1) = \mathbb{E}(C_1 | X=1) \mathbb{P}(X=1) + \mathbb{E}(C_1 | X=0) \mathbb{P}(X=0)$. Then, \begin{align*} \theta &= \mathbb{E}(C_1) - \mathbb{E}(C_0) \\ &= \mathbb{E}(C_1|X=1)\mathbb{P}(X=1) + \mathbb{E}(C_1 | X=0)\mathbb{P}(X=0) - \mathbb{E}(C_0 | X=1) \mathbb{P}(X=1) - \mathbb{E}(C_0 | X=0)\mathbb{P}(X=0) \end{align*}
Not sure where I go from here...
EDIT: here's a nice table that summarizes the setup
\begin{array}{|c|c|c|c|} \hline X& Y & C_0 & C_1 \\ \hline 0 & 0 & 0 & 0^* \\ \hline 0 & 0 & 0 & 0^* \\ \hline 0 & 0 & 0 & 0^* \\ \hline 1 & 1 & 1^* & 1 \\ \hline 1 & 1 & 1^* & 1 \\ \hline 1 & 1 & 1^* & 1 \\ \hline \end{array}