You get the regression standard errors for the coefficients from the standard deviation of the bootstrapped coefficients from each rep:
. sysuse auto
(1978 Automobile Data)
. bs, reps(101) saving("bs_reg.dta", replace): reg price foreign mpg weight
(running regress on estimation sample)
Bootstrap replications (101)
----+--- 1 ---+--- 2 ---+--- 3 ---+--- 4 ---+--- 5
.................................................. 50
.................................................. 100
.
Linear regression Number of obs = 74
Replications = 101
Wald chi2(3) = 58.55
Prob > chi2 = 0.0000
R-squared = 0.4996
Adj R-squared = 0.4781
Root MSE = 2130.7695
------------------------------------------------------------------------------
| Observed Bootstrap Normal-based
price | Coef. Std. Err. z P>|z| [95% Conf. Interval]
-------------+----------------------------------------------------------------
foreign | 3673.06 622.7476 5.90 0.000 2452.498 4893.623
mpg | 21.8536 81.81615 0.27 0.789 -138.5031 182.2103
weight | 3.464706 .7507974 4.61 0.000 1.99317 4.936242
_cons | -5853.696 3816.206 -1.53 0.125 -13333.32 1625.931
------------------------------------------------------------------------------
. use "bs_reg.dta", clear
(bootstrap: regress)
. summarize
Variable | Obs Mean Std. Dev. Min Max
-------------+---------------------------------------------------------
_b_foreign | 101 3599.271 622.7476 2129.934 4902.719
_b_mpg | 101 36.65845 81.81615 -175.5054 288.2288
_b_weight | 101 3.512753 .7507974 1.817149 5.068236
_b_cons | 101 -6261.379 3816.206 -16303.59 2266.739
Of course, this relies on independence of observations or clusters of observations to work. In your time series context, unless you adapt the procedure, the basic bootstrap will not work, even asymptotically. Here's a nice answer that gets into the various ways to adapt the BS to TS setting.