I want to calculate the KL-Divergence between a Laplacian density g and a normal density f. I can decompose $KL(G|F)$ to $\mathbb{E}_g[\log g(X)]-\mathbb{E}_g[\log f(X)]$. I am already stuck with my math at $\mathbb{E}_g[\log g(X)]$.
We have $g(x)=\frac{1}{2\tau}\cdot\exp(-\frac{|x-\nu|}{\tau})$ and $f(x)=\frac{1}{2\pi\sigma^2}\cdot\exp(-\frac{(x-\mu)^2}{2\sigma^2})$.
$\log g(X)=-\log(2\tau)-\frac{|x-\nu|}{\tau}$, thus
$\mathbb{E}_g[\log g(X)]=\int_{-\infty}^{\infty}(-\log(2\tau)-\frac{|x-\nu|}{\tau})\cdot(\frac{1}{2\tau}\cdot\exp(-\frac{|x-\nu|}{\tau}))dx=$
$-\log(2\tau)\int_{-\infty}^{\infty}\frac{1}{2\tau}\exp(-\frac{|x-\nu|}{\tau})dx-\int_{-\infty}^{\infty}\frac{|x-\nu|}{2\tau^2}\exp(-\frac{|x-\nu|}{\tau})dx=$
$-\log(2\tau)-\int_{-\infty}^{\infty}\frac{|x-\nu|}{2\tau^2}\exp(-\frac{|x-\nu|}{\tau})dx$
How can I calculate that integral? And is it even right until there?