I have the following normal distribution $$\begin{pmatrix}X_1\\X_2\\X_3\\\end{pmatrix} \sim N\left[\begin{pmatrix}\mu_1 \\\mu_2 \\\mu_3\\ \end{pmatrix},\begin{pmatrix}\sigma_1^2 & \ a & b \\ \ c & \sigma_2^2 & e\\ \ f & g & \sigma_3^2 \end{pmatrix} \right]$$
How do I calculate: $E(X_1 X_2 | X_3)$
by definition $E(X_1 X_2 | X_3) = E(X_1 X_2) + Cov(X_1 X_2 ,X_3)(Var(X_3))^{-1}(X_1 X_2-E(X_3| X_1 X_2 ))$
$E(X_1 X_2) = Cov(X_1, X_2) + E(X_1)E(X_2) = a +\mu_1 \mu_2$
$Cov(X_1 X_2 ,X_3)=E(X_1 X_2 X_3)-E(X_1X_2)E(X_3)$
How to get $E(X_1 X_2 X_3)$ ?
or is there another way of calculating $Cov(X_1 X_2 ,X_3)$