I am trying to compute the likelihood function for the following model, where the state $ \begin{bmatrix} \pi_t \\ x_t \\ i_t \end{bmatrix}$ is measured directly:
$$ \begin{bmatrix} \pi_t \\ x_t \\ i_t \end{bmatrix} = \begin{bmatrix} a_{\pi} \\ a_x \\ a_i \end{bmatrix} + \begin{bmatrix} b_{11} & b_{12} & b_{13} \\ b_{21} & b_{22} & b_{23} \\ b_{31} & b_{32} & b_{33} \end{bmatrix} \begin{bmatrix} \pi_{t-1} \\ x_{t-1} \\ i_{t-1} \end{bmatrix} + \begin{bmatrix} \varepsilon_{\pi} \\ \varepsilon_x \\ \varepsilon_i \end{bmatrix} $$
All instructions for using the Kalman filter to estimate the parameters of this model have required the following state and measurement equations: $$ \xi_{t+1} = A_0\xi_t + Cw_{t+1} \\ y = G x_t + v_t $$
To this end, I have then re-written the above model in the following state-space form:
$$ \begin{bmatrix} 1 \\ \pi_t \\ x_t \\ i_t \end{bmatrix} = \ \begin{bmatrix} 1 & 0 & 0 & 0 \\ a_{\pi} & b_{11} & b_{12} & b_{13} \\ a_x & b_{21} & b_{22} & b_{23} \\ a_i & b_{31} & b_{32} & b_{33} \end{bmatrix} \begin{bmatrix} 1 \\ \pi_{t-1} \\ x_{t-1} \\ i_{t-1} \end{bmatrix} + \begin{bmatrix} 0 & 0 & 0 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} \varepsilon_{\pi} \\ \varepsilon_x \\ \varepsilon_i \end{bmatrix} $$
However any time I try to compute the likelihood function, I am told that there is no way to compute the variance of the forecast of the state because the variance-covariance matrix is singular. The vcov matrix $\Gamma_0$ is defined by:
$$ vec(\Gamma_0) = (I - A_0 \otimes A_0)^{-1}(C\otimes C)vec(\Sigma) $$
How does one elicit the likelihood function of the first system then?