Suppose I have the regression model: $Y_i=T^{\top}_{i}\beta_0+e_{i}$ with $E(e_i|X_i)=0$, where we have two regressors $X_i,\ E(D|X_{i})$ so that $T^{\top}_{i}=[X_i,\ E(D|X_{i})]$. $X_{i}$ is a discrete random variable with support $\{1,2,3\}$ and $D$ is a dummy variable. Here $E(D|X_{i})$ denotes the conditional expectation of $D$ given $X_i$. Data is a random sample for $(Y,X,D)$: $\{Y_i,X_i,D_i\}_{i=1}^{n}$. In order to estimate $\beta_0$ we need to estimate the second regressor first with a frequency estimator:
$\widehat{E}(D|X_i=k)=\frac{\sum_{i=1}^{n}\mathbf{1}(D_i=1, X_i=k)}{\sum_{i=1}^{n}\mathbf{1}(X_{i}=k)}$ for $k=1,2,3$.
In the second step, we estimate $\beta_0$ using generated regressor $\widehat{T}^{\top}_{i}=[X_i,\ \widehat{E}(D|X_{i})]$.
$\widehat{\beta}=(\frac{1}{n}\sum_{i=1}^{n}\widehat{T}_{i}\widehat{T}_{i}^{\top})^{-1}\frac{1}{n}\sum_{i=1}^{n}\widehat{T}_{i}y_{i}$.
Consider another an infeasible version that uses true value of $E(D|X_i)$:
$\widetilde{\beta}=(\frac{1}{n}\sum_{i=1}^{n}T_{i}T_{i}^{\top})^{-1}\frac{1}{n}\sum_{i=1}^{n}T_{i}y_{i}$.
Do we have:
$\sqrt{n}(\widehat{\beta}-\beta_{0})=\sqrt{n}(\widetilde{\beta}-\beta_0)+o_{p}(1)$?
Thanks!