Let $\{x_t\}_{t\in\mathbb{N}}$ be a zero mean strictly stationary sequence of random variables and $c:\mathbb{N}\to\mathbb{R}$ the (auto)covariance function. If the process follows the AR(1) model $$x_t=\rho x_{t-1}+e_t$$ with $e_t\sim N(0,\sigma^2_e)$ i.i.d. , then I read that the following holds: $$c(0)+2\sum_{r=1}^\infty c(r)=\sigma^2\frac{1+\rho}{1-\rho}$$ My question
In my case, I'm dealing with the expression $c(0)+2\sum_{r=1}^\infty c(kr)$ where $k>1$ is a strictly positive natural number. Does it change the value?
My solution (Update)
\begin{align} \Big[c(0)+2\sum_{r=1}^\infty c(kr)\Big]=\sigma^2\Big(1+2\sum_{r\geq 1}\rho^{k r} \Big )=\sigma^2\frac{1+\rho^k}{1-\rho^k} \end{align} given that $0<\lvert \rho \rvert<1$