Considering an Auto-Regressive Moving Average (ARMA) model, \begin{equation*} y_k = \phi_0 + \sum_{j=1}^{p} \phi_j y_{k-j} + \sum_{l=1}^{q} \theta_l \varepsilon_{k-l}+ \varepsilon_k, \qquad \text{for}\quad k=1,\cdots,n \end{equation*} where the noise term $\varepsilon_k$ follows the Normal distribution, such that $\varepsilon_k\sim\mathcal{N}(0,\sigma^2_{\varepsilon})$.
If we split ARMA process $\{y_k\}_{k=1}^n$ into two parts: \begin{equation*} x_k = \phi_0 + \sum_{j=1}^{r} \phi_j y_{k-j} + \sum_{l=1}^{s} \theta_l \varepsilon_{k-l}, \qquad \text{for}\quad k=1,\cdots,n \end{equation*} and \begin{equation*} z_k = \sum_{j=r+1}^{p} \phi_j y_{k-j} + \sum_{l=s+1}^{q} \theta_l \varepsilon_{k-l} + \varepsilon_k, \qquad \text{for}\quad k=1,\cdots,n \end{equation*} where $1<r<p$ and $1<s<q$, so that $y_k=x_k+z_k$.
If ARMA process $\{y_k\}_{k=1}^n$ is wide-sense stationary, can I say that both sequences $\{x_k\}_{k=1}^n$ and $\{z_k\}_{k=1}^n$ are stationary? How to prove it? Many thanks!!