Say $y \mid x \sim \text{Normal}(Ax, B)$ and $x \sim \text{Normal}(c,D)$. Let's assume further that $y \in \mathbb{R}^1$ and $x \in \mathbb{R}^2$.
To find $p(x \mid y)$ we can usually do
\begin{align*} p(x \mid y) &\propto p(y \mid x) p(x) \\ &\propto \exp\left[ -\frac{1}{2}\left\{ (y - Ax)^\intercal B^{-1}(y-Ax) + (x-c)^\intercal D^{-1}(x-c) \right\} \right] \\ &\propto \exp\left[ -\frac{1}{2}\left\{ x^\intercal A^\intercal B^{-1} A x - 2 x^\intercal A^\intercal B^{-1} y + x^\intercal D^{-1}x -2 x^\intercal D^{-1} c \right\} \right] \end{align*} and end up with a posterior precision of $\left[A^\intercal B^{-1} A + D^{-1} \right] $, and a posterior mean of $\left[A^\intercal B^{-1} A + D^{-1} \right]^{-1}\left[y^\intercal B^{-1}A + c^\intercal D^{-1} \right]$.
However, when $B$ is the $0$ matrix, $y$ follows a "singular" or "degenerate" multivariate normal distribution, and none of the above work is valid because $p(y \mid x)$ doesn't exist (it isn't dominated by Lebesgue's measure).
We can apply the more general Bayes' rule
$$ p(x \in S \mid y) = \frac{\int_S f(x)\mathbb{1}(Ax=y)dx}{\int_{\mathbb{R}} f(x)\mathbb{1}(Ax=y)dx} $$
but I'm having some trouble with the integral. Can anyone help?
Edit:
The last expression isn't valid--taking the expectation of that indicator is $0$. It's kind of like asking for the probability that a continuous random variable is exactly equal to a specific value.