3

I want to test the effects of different variables on Reaction Times data. Following the recommendations of Lo & Andrews (2015) I compared the AIC/BIC of three GLMM with a Gaussian, a Gamma and an Inverse Gaussian distribution with an identity link (with the lme4 package)

Model_Mn_VAAST<- lmer(VAAST.RT~Conditionc* Type_Bloc_Encounteredc + (1|pp) + (1|Perso), Pilot5_FINAL_Mn2)
Model_Mn_VAAST_gamma<- glmer(VAAST.RT~Conditionc* Type_Bloc_Encounteredc + (1|pp) + (1|Perso), Pilot5_FINAL_Mn2, 
                             family = Gamma(link = "identity"),
                                            glmerControl(optimizer = "bobyqa", optCtrl = list(maxfun = 1000000)))
Model_Mn_VAAST_invGauss<- glmer(VAAST.RT~Conditionc* Type_Bloc_Encounteredc  + (1|pp) + (1|Perso), Pilot5_FINAL_Mn2, family = inverse.gaussian(link = "identity"))

The model that best fits my data (with the lower AIC) is the Inverse Gaussian GLMM.

Model_Mn_VAAST: VAAST.RT ~ Conditionc * Type_Bloc_Encounteredc + (1 | pp) + (1 | Perso)
Model_Mn_VAAST_gamma: VAAST.RT ~ Conditionc * Type_Bloc_Encounteredc + (1 | pp) + (1 |   Perso)
Model_Mn_VAAST_invGauss: VAAST.RT ~ Conditionc * Type_Bloc_Encounteredc + (1 | pp) + (1 |  Perso)

                        npar    AIC    BIC  logLik deviance  Chisq Df Pr(>Chisq)    
Model_Mn_VAAST             7 335238 335294 -167612   335224                         
Model_Mn_VAAST_gamma       7 328211 328268 -164099   328197 7026.4  0  < 2.2e-16 ***
Model_Mn_VAAST_invGauss    7 326411 326468 -163199   326397 1799.9  0  < 2.2e-16 ***
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Ok. I run the Inverse Gaussian GLMM and obtained the following output.

Generalized linear mixed model fit by maximum likelihood (Laplace Approximation) [ glmerMod]
 Family: inverse.gaussian  ( identity )
Formula: VAAST.RT ~ Conditionc * Type_Bloc_Encounteredc + (1 | pp) + (1 | Perso)
   Data: Pilot5_FINAL_Mn2

      AIC       BIC    logLik  deviance  df.resid 
 326411.3  326468.2 -163198.7  326397.3     24842 

Scaled residuals: 
    Min      1Q  Median      3Q     Max 
-2.1492 -0.6180 -0.2170  0.3246  9.4115 

Random effects:
 Groups   Name        Variance  Std.Dev. 
 pp       (Intercept) 3.324e+03 57.650995
 Perso    (Intercept) 7.707e+01  8.779221
 Residual             7.768e-05  0.008814
Number of obs: 24849, groups:  pp, 201; Perso, 64

Fixed effects:
                                  Estimate Std. Error t value Pr(>|z|)    
(Intercept)                        856.078      6.629 129.145   <2e-16 ***
Conditionc                          14.450      6.144   2.352   0.0187 *  
Type_Bloc_Encounteredc              -5.169      2.062  -2.507   0.0122 *  
Conditionc:Type_Bloc_Encounteredc    6.647      3.378   1.968   0.0491 *  
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Correlation of Fixed Effects:
            (Intr) Cndtnc Ty_B_E
Conditionc  -0.109              
Typ_Blc_Enc -0.023  0.055       
Cndtn:T_B_E -0.110  0.080  0.038

I am a little bit confused concerning the obtained p-values. Indeed, if I compare models with and without any of the fixed parameters (with the anova() finction) I did not obtain the same results. For instance, concerning the interaction term I found the following results:

Models:
Model_Mn_VAAST_invGaussInt: VAAST.RT ~ Conditionc + Type_Bloc_Encounteredc + (1 | pp) + (1 |  Perso)
Model_Mn_VAAST_invGauss: VAAST.RT ~ Conditionc * Type_Bloc_Encounteredc + (1 | pp) + (1 | Perso)

                           npar    AIC    BIC  logLik deviance  Chisq Df Pr(>Chisq)
Model_Mn_VAAST_invGaussInt    6 326412 326460 -163200   326400                     
Model_Mn_VAAST_invGauss       7 326411 326468 -163199   326397 2.3283  1      0.127

If I am right, from the summary() function the p-values are calculated based on Wald tests while there are calculated based on likelihood ratio tests with anova(). Which one is the best method ? And how can I get the confidence intervals for the parameters estimates ? The only way I know is

confint(Model_Mn_VAAST_invGauss, method = "Wald")

But this doesn't apply if I choose the anova function for the p-values, no ?

Thank you for any help or information !

I.Nuel
  • 31
  • 1

0 Answers0