Can someone help prove this theorem? Many thanks!
If $p\to0$ and $n\to\infty$ in such a way that $\lim np = \lambda > 0$, then for $k=0, 1,\dots$: $$\lim_{n\to\infty}\binom nkp^k (1-p)^{n-k}=\frac{\lambda^k}{k!} e^{-\lambda}$$
Can someone help prove this theorem? Many thanks!
If $p\to0$ and $n\to\infty$ in such a way that $\lim np = \lambda > 0$, then for $k=0, 1,\dots$: $$\lim_{n\to\infty}\binom nkp^k (1-p)^{n-k}=\frac{\lambda^k}{k!} e^{-\lambda}$$
One of the elementary versions follows as below, (a simplified and common version with $\lambda=np$, instead of limiting): $$\begin{align}\lim_{n\rightarrow\infty}{n\choose k}p^k(1-p)^{n-k}&=\lim_{n\rightarrow\infty }\frac{n!}{(n-k)!k!}\left(\frac{\lambda}{n}\right)^k\left(1-\frac{\lambda}{n}\right)^{n-k}\\&=\frac{\lambda^k}{k!}\lim_{n\rightarrow\infty }\underbrace{\frac{n!}{(n-k)!n^k}}_{\rightarrow1}\underbrace{\left(1-{\lambda\over n}\right)^{n}}_{\rightarrow e^{-\lambda}}\underbrace{\left(1-{\lambda\over n}\right)^{-k}}_{\rightarrow1}\end{align}$$
It's a good exercise to show each of these limits.