Borrowing the LaTeX from Wikipedia, the joint density of a bivariate $(X,Y)$ is given by
$$f(x,y) =
\frac{1}{2 \pi \sigma_X \sigma_Y \sqrt{1-\rho^2}}\\
\times \exp\left(
-\frac{1}{2(1-\rho^2)}\left[
\frac{(x-\mu_X)^2}{\sigma_X^2} +
\frac{(y-\mu_Y)^2}{\sigma_Y^2} -
\frac{2\rho(x-\mu_X)(y-\mu_Y)}{\sigma_X \sigma_Y}
\right]
\right)$$
Therefore, assuming a flat prior on $\rho\in(-1,1)$, the full conditional posterior of $\rho$ has density proportional to
$$\pi(\rho)\propto\frac{1}{\sqrt{1-\rho^2}}\times \exp\left(
-\frac{1}{2(1-\rho^2)}\left[
\frac{(x-\mu_X)^2}{\sigma_X^2} +
\frac{(y-\mu_Y)^2}{\sigma_Y^2}\right]\right)\\\times\exp\left(-\frac{1}{2(1-\rho^2)}\left[-\frac{2\rho(x-\mu_X)(y-\mu_Y)}{\sigma_X \sigma_Y}\right]\right)$$
that is
$$\pi(\rho)\propto\frac{1}{\sqrt{1-\rho^2}}\times \exp\left(
-\frac{1}{2(1-\rho^2)}\left[
\frac{(x-\mu_X)^2}{\sigma_X^2} +
\frac{(y-\mu_Y)^2}{\sigma_Y^2}\right]\right)\\
\times \exp\left(\frac{1}{2(1-\rho^2)}\frac{2\rho(x-\mu_X)(y-\mu_Y)}{\sigma_X \sigma_Y}\right)$$
which is thus a density of the form
$$g(\rho)\propto (1-\rho^2)^{-1/2}\exp\{-\beta/(1-\rho^2)+\alpha\rho/(1-\rho^2)\}\mathbb{I}_{(-1,1)}(\rho)$$
with $|\alpha|\le\beta$. Since this does not appear to be a standard distribution, one solution is to run Metropolis within Gibbs.
I however answered a very similar question a while ago, using
accept reject to simulate exactly this full conditional.