The case $n=1$ can be solved by algebra, I get
$$
F^{-1}(p) = \frac{\alpha}{\exp\left( \frac{\log((1-p)/p}{\beta} \right)}
$$ which can be used as a test for a numerical solution. For $n \ge 2$ only a numerical solution is practical, with R the function uniroot
is helpful, there must be something similar in python. Some R code:
makeF <-
function(k, alfa, beta) {
n <- length(k)
if(length(alfa)==1) alfa <- rep(alfa, n)
if(length(beta)==1) beta <- rep(beta, n)
stopifnot(min(k)>0)
stopifnot(min(alfa)>0)
stopifnot(min(beta)>0)
k <- k/sum(k)
Vectorize( function(x) sum(k/(1+(x/alfa)^(-beta))) )
}
to make the cdf. Then for the quantile function:
qF <- function(p, k, alfa, beta) {
F <- makeF(k,alfa,beta)
Vectorize( function(p) uniroot(function(x) F(x)-p, interval=c(0,1000),
extendInt="upX")$root )(p)
}
Then an example:
qF(c(0.2, 0.4, 0.6, 0.8), 1:3, 1:3, 2)
[1] 0.9999975 1.7621406 2.7914962 4.7475614