1

Let $N>0$ be the number of considered samples. We draw $x_1, \ldots, x_n$ from a uniform distribution over $[0;1]$. We compute $y_1, \ldots, y_{n-1}$ the differences of the sorted $(x_i)_i$.

I'd like to compute the expectancy of the max over the median for these values : $E(\max((y_i)_i) / \text{med}((y_i)_i)$

kjetil b halvorsen
  • 63,378
  • 26
  • 142
  • 467
Rodolphe LAMPE
  • 255
  • 1
  • 8
  • 2
    Luc Devroye has a chapter in [Non-Uniform Random Variate Generation](https://amzn.to/371Pa43) dedicated to Uniform and Exponential spacings (Chapter V). – Xi'an Jan 17 '20 at 08:43
  • 2
    Adding $y_0=\min(x_i)$ and $y_n=1-\max(x_i)$ to the $y_i$'s, a convenient representation is for instance (Theorem 2.2, p.208):$$(Y_0,\ldots,Y_n)\sim(\epsilon_0,\ldots,\epsilon_n)\big/\sum_{j=0}^n \epsilon_j$$where the $\epsilon_j$'s are iid $\mathcal Exp(1)$. – Xi'an Jan 17 '20 at 08:46

0 Answers0