Let $N>0$ be the number of considered samples. We draw $x_1, \ldots, x_n$ from a uniform distribution over $[0;1]$. We compute $y_1, \ldots, y_{n-1}$ the differences of the sorted $(x_i)_i$.
I'd like to compute the expectancy of the max over the median for these values : $E(\max((y_i)_i) / \text{med}((y_i)_i)$