Let x and y be complex Gaussian random vectors with length L, and $\mathbb{E}[x]=a$ and $\mathbb{E}[y]=b$, and they are correlated such that $c = \mathbb{E}\left[\left|\mathbf{\mathit{\mathbf{x}}}^{T}\mathbf{y}\right|\right]$
Can we write $\mathbb{E}[|\mathbf{x}^T\mathbf{y}|^2]=Var(\mathbf{x}^T\mathbf{y})+\mathbb{E}[|\mathbf{x}^T\mathbf{y}|]^2$ $?$ Hence,
$$\mathbb{E}|\mathbf{x}^T\mathbf{y}|^2]=Var(\mathbf{x}^T\mathbf{y})+c^2$$
Then, can we derive an analytical expression for $Var(\mathbf{x}^T\mathbf{y})$ or $\mathbb{E}|\mathbf{x}^T\mathbf{y}|^2]$) ?