Consider a "rotationally symmetric bivariate normal distribution". For your context, what this means is that the proposal distribution is bivariate normal with no correlation (see here maybe. Essentially, rotating the contours of this bivariate normal has not effect). That is, if $\Sigma$ is the matrix such that
$$\Sigma = \left( \begin{array}{cc}1 & 0 \\ 0 & 1 \end{array} \right)\,, $$
then the proposal distribution is
$$
q(\mathbf{x}, \mathbf{y}) \propto \exp \left\{-\dfrac{ \left(\mathbf{x} - \mathbf{y} \right)^T \Sigma^{-1} \left(\mathbf{x} - \mathbf{y} \right)}{2} \right\} = \exp \left\{-\dfrac{ \left(\mathbf{x} - \mathbf{y} \right)^T \left(\mathbf{x} - \mathbf{y} \right)}{2} \right\} = \exp \left\{-\dfrac{ \|\mathbf{x} - \mathbf{y} \|^2 }{2} \right\}\,.
$$
Then, this proposal fits into the definition of a "rotationally symmetric bivariate normal distribution" as @Xi'an describes it. For some function $h$,
$$
q(\mathbf{x}, \mathbf{y}) = h \left(\|\mathbf{x} - \mathbf{y} \|^2 \right)\,.
$$
For a random walk MH algorithm, the proposal does not need to be rotationally symmetric as long as $q(\mathbf{x}, \mathbf{y}) = q(\mathbf{y}, \mathbf{x})$. If we choose a generation $\Sigma$ such as
$$\Sigma = \left( \begin{array}{cc} \sigma^2_{11} & \sigma^2_{12} \\ \sigma^2_{12} & \sigma^2_{22} \end{array} \right)\,, $$
then, the proposal distribution
$$
q(\mathbf{x}, \mathbf{y}) \propto \exp \left\{-\dfrac{ \left(\mathbf{x} - \mathbf{y} \right)^T \Sigma^{-1} \left(\mathbf{x} - \mathbf{y} \right)}{2} \right\} = \exp \left\{-\dfrac{ \left(\mathbf{y} - \mathbf{x} \right)^T \Sigma^{-1} \left(\mathbf{y} - \mathbf{x} \right)}{2} \right\}
$$
is is still symmetric, but not rotationally symmetric.