Let $X$ and $Y$ be uncorrelated Rademacher random variables
Then,
$Cov(X,Y)=E[XY]-E[X]E[Y]=0$
But $E[X]=E[Y]=0$
Then $E[XY]=P(X=1,Y=1)+P(X=-1,Y=-1)-P(X=1,Y=-1)-P(X=-1,Y=1)=0$
I know that $P(X=1)P(Y=1) = 1/4$
How to show that it is equal or not to $P(X=1,Y=1)$ from what I have ?