I have on variable that is number of visitors. I am trying to investigate if a recent increase in another variable has caused or related to an increase in the number of visits.
I have run some simple t-test that show significance in the increase in the number of visitors. But I feel this only half answer my question. It could be that the visitors just increased. I have checked for seasonality and that is not an issue. A correlation analyses on the data shows a correlation between .25. Is there a better analysis to do or a transformation I should make (maybe log)?
Here are the visitors by week:
Time visitors
2019-05-13 0:00:00 11339
2019-05-20 0:00:00 11667
2019-05-27 0:00:00 11983
2019-06-03 0:00:00 11263
2019-06-10 0:00:00 11389
2019-06-17 0:00:00 11240
2019-06-24 0:00:00 11091
2019-07-01 0:00:00 11520
2019-07-08 0:00:00 11506
2019-07-15 0:00:00 11405
2019-07-22 0:00:00 11262
2019-07-29 0:00:00 10707
2019-08-05 0:00:00 11347
2019-08-12 0:00:00 9150
2019-08-19 0:00:00 11387
2019-08-26 0:00:00 11049
2019-09-02 0:00:00 11675
2019-09-09 0:00:00 10895
2019-09-16 0:00:00 10552
2019-09-23 0:00:00 10902
2019-09-30 0:00:00 12145
2019-10-07 0:00:00 12632
2019-10-14 0:00:00 11980
2019-10-21 0:00:00 12148
2019-10-28 0:00:00 12774
2019-11-04 0:00:00 12232
2019-11-11 0:00:00 13556
2019-11-18 0:00:00 12227
2019-11-25 0:00:00 11969
and here is the variable that has increased. I am trying to determine if the increase at the end of Sept has led to increased visits.
time variable
2019-05-13 0:00:00 13
2019-05-20 0:00:00 2
2019-05-27 0:00:00 7
2019-06-03 0:00:00 3
2019-06-10 0:00:00 3
2019-06-17 0:00:00 68
2019-06-24 0:00:00 22
2019-07-01 0:00:00 22
2019-07-08 0:00:00 17
2019-07-15 0:00:00 36
2019-07-22 0:00:00 433
2019-07-29 0:00:00 244
2019-08-05 0:00:00 165
2019-08-12 0:00:00 39
2019-08-19 0:00:00 16
2019-08-26 0:00:00 28
2019-09-02 0:00:00 9
2019-09-09 0:00:00 54
2019-09-16 0:00:00 4
2019-09-23 0:00:00 6
2019-09-30 0:00:00 4204
2019-10-07 0:00:00 1569
2019-10-14 0:00:00 1528
2019-10-21 0:00:00 181
2019-10-28 0:00:00 134
2019-11-04 0:00:00 19
2019-11-11 0:00:00 85
2019-11-18 0:00:00 21
2019-11-25 0:00:00 40
2019-12-02 0:00:00 66```