You can find a proof of the general case in Section 2.5.3 (pp. 42-43) of Anderson (1984). The proof covers about a page and half to obtain the general formula
$$\rho_{ij\cdot q+1,...,p} = \frac
{\rho_{ij\cdot q+2,...,p} - \rho_{i, q+1\cdot q+2,...,p} \rho_{j, q+1\cdot q+2,...,p}}
{
\sqrt{1 - \rho^2_{i,q+1\cdot q+2,...,p}}
\sqrt{1 - \rho^2_{j,q+1\cdot q+2,...,p}}
}.$$
Your formula follows on substitution and on a relabeling of indices if needed.
T.W. Anderson (1984) An Introduction to Multivariate Statistical Analysis. Second Edition. John Wiley & Sons.