Reproducing this earlier question on the forum,
For ${\boldsymbol Y} \sim \mathcal{N}(\boldsymbol\mu, \Sigma)$,
consider partitioning $\boldsymbol\mu$ and ${\boldsymbol Y}$ into
$$\boldsymbol\mu
= \begin{bmatrix} \boldsymbol\mu_1 \\ \boldsymbol\mu_2 \end{bmatrix} $$ $${\boldsymbol Y}=\begin{bmatrix}{\boldsymbol y}_1 \\ {\boldsymbol
y}_2 \end{bmatrix}$$
with a similar partition of $\Sigma$ into $$ \begin{bmatrix}
\Sigma_{11} & \Sigma_{12}\\ \Sigma_{21} & \Sigma_{22} \end{bmatrix} $$
Then, $f({\boldsymbol y}_1|{\boldsymbol y}_2={\boldsymbol a})$, the
conditional distribution of the first partition given the second, is
$\mathcal{N}(\overline{\boldsymbol\mu},\overline{\Sigma})$, with mean
$$
\overline{\boldsymbol\mu}=\boldsymbol\mu_1+\Sigma_{12}{\Sigma_{22}}^{-1}({\boldsymbol a}-\boldsymbol\mu_2)
$$
and covariance matrix
$$
\overline{\Sigma}=\Sigma_{11}-\Sigma_{12}{\Sigma_{22}}^{-1}\Sigma_{21}$$
Therefore, since the vector $(X,Z,S)$ is Gaussian with zero mean, without loss of generality since $$\mathbb E[\exp\{X\}]=\mathbb E[\exp\{X-\mu+\mu\}]=\mathbb E[\exp\{X-\mu\}]\exp\{\mu\},\tag{1}$$ and arbitrary covariance matrix $\Sigma$, with the vector being independent from $Y$, the conditional distribution of $(X,Z)$ conditional on $(S,Y)$ is Gaussian with mean $\Sigma_{12}{\Sigma_{22}}^{-1}S$ and variance $\overline{\Sigma}$ (see above). This implies that the expectation of interest which is also the MGF of $X+YZ$ at $t=-1$ is
\begin{align*}\mathbb E[\exp\{W\}]&=\mathbb E[\mathbb E[\exp\{-\underbrace{(X+YZ)}_{(1\ Y)\,(X\ Z)^\text{T}}\}|S,Y]]\\
&=\exp\left\{-(1\ Y)\Sigma_{12}{\Sigma_{22}}^{-1}S +
\frac{1}{2}(1\ Y) \overline{\Sigma} (1\ Y)^\text{T} \right\}
\end{align*}
since
$$(1\ Y)\,(X\ Z)^\text{T} | S,Y \sim \mathcal N\left((1\ Y)\Sigma_{12}{\Sigma_{22}}^{-1}S,(1\ Y) \overline{\Sigma} (1\ Y)^\text{T}\right)$$