I have run a model for a data set that looks like the following:
site date species id success_rfid length success_seed seed_num
1 YB2 2/16/2019 BCCH 0110174217 0 2 1 1
2 YB2 2/16/2019 BCCH 0110174857 1 3 1 1
3 YB2 2/16/2019 BCCH 0110174217 0 1 1 1
4 YB2 2/16/2019 BCCH 0110174857 0 2 1 1
5 YB2 2/16/2019 WBNU 0110171AA5 0 2 1 1
6 YB2 2/22/2019 WBNU 0110171AA5 1 4 1 1
mod3 <- glmer(success_rfid ~ species + site + length + (1|id), family = binomial( link = "logit"), data = data)
This the output:
Fixed effects:
Estimate Std. Error z value Pr(>|z|)
(Intercept) -1.55910 0.59693 -2.612 0.00901 **
speciesTUTI 1.37388 0.66570 2.064 0.03903 *
speciesWBNU 1.16029 0.76006 1.527 0.12687
siteL3 -0.98732 0.63769 -1.548 0.12156
siteYB2 -0.01193 0.74703 -0.016 0.98726
length 0.25954 0.11648 2.228 0.02587 *
How do I go about interpreting what the output? I've done this for count data, but not binary data (Yes/No).