Consider a discrete distribution $X$ that is a mixture of two discrete distributions $A$ and $B$. Explicitly, $X=A$ with probability $p$ and $X=B$ with probability $1-p$. Denote the pgfs of $A$ and $B$ as $\mathcal{G}_A$ and $\mathcal{G}_B$ respectively.
I want to write an expression for the pgf $\mathcal{G}_X$ of $X$. Here's what I've done so far, am I on the right track?
Let $Y\sim X$ and denote the probability measure on $A$ and $B$ as $\mathbb{P}_A$ and $\mathbb{P}_B$ respectively. Then: $$ \begin{align*} \mathbb{P}(Y=k) &= \begin{cases} \mathbb{P}_A(Y=k) & \textrm{with probability $p$} \\ \mathbb{P}_B(Y=k) & \textrm{with probability $1-p$} \end{cases} \\ &= p\mathbb{P}_A(Y=k) + (1-p)\mathbb{P}_B(Y=k) \end{align*} $$
Then $$ \begin{align*} \mathcal{G}_X(z) &= \sum_{k=0}^{\infty}z^k\mathbb{P}(Y=k) \\ &= \sum_{k=0}^{\infty}z^k\left(p\mathbb{P}_A(Y=k) + (1-p)\mathbb{P}_B(Y=k)\right) \\ &= \sum_{k=0}^{\infty}pz^k\mathbb{P}_A(Y=k) + \sum_{k=0}^{\infty}(1-p)z^k\mathbb{P}_B(Y=k) \\ &= p\sum_{k=0}^{\infty}z^k\mathbb{P}_A(Y=k) + (1-p)\sum_{k=0}^{\infty}z^k\mathbb{P}_B(Y=k) \\ &= p\mathcal{G}_A(z)+(1-p)\mathcal{G}_B(z) \end{align*} $$