In a simple linear regression model
$$E(Y|X=x)=\beta_0+\beta_1x,$$
where the parameters $\beta_0, \beta_1$ are estimated via OLS as
$$\hat{\beta}_1=\frac{\mathrm{Cov}(X,Y)}{\mathrm{Var}(X)}, \text{and}$$ $$\hat{\beta}_0=\mathrm{E}(Y)-\hat{\beta}_1\mathrm{E}(X),$$
it is well known that the variance of the residuals is $$\mathrm{Var}(y-\hat{\beta}_0-\hat{\beta}_1x|X=x)=\left(1-\frac{\mathrm{Cov}^2(X,Y)}{\mathrm{Var}(X)\mathrm{Var}(Y)}\right)\mathrm{Var}(Y)=(1-r^2)\mathrm{Var}(Y).$$
What can be said about:
- $\mathrm{E}(|y-\hat{\beta}_0-\hat{\beta}_1x|\,|X=x)$? Note: not $\mathrm{E}(y-\hat{\beta}_0-\hat{\beta}_1x|X=x)$, which would be equal to 0.
- $\mathrm{E}[(y-\hat{\beta}_0-\hat{\beta}_1x)^2\,|X=x]$?
- $\mathrm{Var}(|y-\hat{\beta}_0-\hat{\beta}_1x|\,|X=x)$?