The purpose of the outer cross-validation (CV) is to get an estimate of the classifier's performance on genuinely unseen data. If the hyperparameters are tuned based on a cross-validation statistic this can lead to a biased performance estimate and so an outer loop, which was not involved in any aspect of feature or model selection is needed to determine the performance estimate.
Conversely if you do not tune the hyperparameters (and use default hyperparameters in SVM_train
and SVM-classify
) you do not need an outer cross-validation loop.
Here is an example of some code that will implement nested CV, this implementation uses Nelder-Mead optimization (NMO) and sequential forward feature selection in the inner loop to find the optimum feature set and hyperparameters (box-constraint (C) and RBF sigma).
Data
are the data to be classified (Dimension: Cases x Features)
Labels
are the class labels for each case
%************** Nested cross-validation ******************
Results = classperf(Labels, 'Positive', 1, 'Negative', 0); % Initialize the classifier performance object
for i = 1:length(Labels)
test = zeros(size(Labels));
test(i) = 1; test = logical(test); train = ~test;
disp(sprintf('Fold: %d of %d.\n',i,length(Labels)))
%************** Perform feature selection ************
z0 = [0,0]; % z=[rbf_sigma,boxconstraint] - set to default exp(z) = [0,0]
[rbf_sigma_Acc(i) boxconstraint_Acc(i) maxAcc Features{i}] = SVM_NMO(z0,Data(train,:),Labels(train),num_folds);
%***************** Outer loop CV *********************
svmStruct = svmtrain(Data(train,Features{i}),Labels(train),'Kernel_Function','rbf','rbf_sigma',rbf_sigma_Acc(i),'boxconstraint',boxconstraint_Acc(i));
class = svmclassify(svmStruct,Data(test,Features{i})); % updates the CP object with the current classification results
classperf(Results,class,test);
Acc_fold(i) = Results.LastCorrectRate;
disp(sprintf('Test set Accuracy (Fold %d): %2.2f',i,Acc_fold(i)))
disp(sprintf('Test set Accuracy (running mean): %2.2f\n',100*Results.CorrectRate))
end
function [rbf_sigma boxconstraint Acc Features_opt] = SVM_NMO(z0,Data,Labels,num_folds)
opts = optimset('TolX',1e-1,'TolFun',1e-1);
fun = @(z)SVM_min_fn(Data,Labels,exp(z(1)),exp(z(2)),num_folds);
[z_opt,Crit] = fminsearch(fun,z0,opts);
[~, Features_opt] = fun(z_opt);
%************ Get optimal results **************
Acc = 1 - Crit; % Accuracy for model
rbf_sigma = exp(z_opt(1));
boxconstraint = exp(z_opt(2));
disp(sprintf('Max Acc: %2.2f, RBF sigma: %1.2f. Boxconstraint: %1.2f',Acc,rbf_sigma,boxconstraint))
function [Crit Features] = SVM_min_fn(Data,Labels,rbf_sigma,boxconstraint,num_folds)
direction = 'forward';
opts = statset('display','iter');
kernel = 'rbf';
disp(sprintf('RBF sigma: %1.4f. Boxconstraint: %1.4f',rbf_sigma,boxconstraint))
c = cvpartition(Labels,'k',num_folds);
opts = statset('display','iter','TolFun',1e-3);
fun = @(x_train,y_train,x_test,y_test)SVM_class_fun(x_train,y_train,x_test,y_test,kernel,rbf_sigma,boxconstraint);
[fs,history] = sequentialfs(fun,Data,Labels,'cv',c,'direction',direction,'options',opts);
Features = find(fs==1); % Features selected for given sigma and C
[Crit,h] = min(history.Crit); % Mean classification error
Hope this helps