For this type of estimate, it is quite difficult to get a useful expression for the distribution of the estimator, and hence, for the expected value. The behaviour of the estimator can be related back to a normal quadratic form, but this gives quite a complicated expression.
Distribution of the times series vector: Suppose we use the centered $\text{AR}(1)$ model $y_t = \phi y_{t-1} + \varepsilon_t$ with homoscedastic normal error terms and $|\phi|<1$ for stationarity. We can write the distribution of the observable time series vector $\mathbb{y} = (y_1,...,y_n)$ as:
$$\mathbf{y} \sim \text{N}( \mathbf{0},\mathbf{\Sigma}(\phi)) \quad \quad \quad
\mathbf{\Sigma}(\phi) = \frac{\sigma^2}{1-\phi^2}
\begin{bmatrix}
1 & \phi & \phi^2 & \cdots & \phi^{n-2} & \phi^{n-1} \\
\phi & 1 & \phi & \cdots & \phi^{n-3} & \phi^{n-2} \\
\phi^2 & \phi & 1 & \cdots & \phi^{n-4} & \phi^{n-3} \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
\phi^{n-2} & \phi^{n-3} & \phi^{n-4} & \cdots & 1 & \phi \\
\phi^{n-1} & \phi^{n-2} & \phi^{n-3} & \cdots & \phi & 1 \\
\end{bmatrix}.$$
Taking the principal square root of the variance matrix gives the alternative form:
$$\mathbf{y} = \mathbf{\Delta}(\phi) \mathbf{z} \quad \quad \quad
\mathbf{z} \sim \text{N}( \mathbf{0},\boldsymbol{I}) \quad \quad \quad
\mathbf{\Delta}(\phi) = \mathbf{\Sigma}(\phi)^{1/2}.$$
(The matrix $\mathbf{\Delta}(\phi)$ can easily be obtained using the Eigendecomposition of the variance matrix. The variance matrix and its square root are symmetric circulant matrices, with fixed eigenvector matrix equal to the DFT matrix and eigenvalues that are functions of $\phi$.)
Distribution of the OLS estimator: For this model (clarifying your use of subscripts in the sums) the OLS estimator is:
$$\hat{\theta} = \frac{\sum_{t=2}^n y_t y_{t-1}}{\sum_{t=2}^n y_t^2}.$$
(Note that the OLS estimator for this model is not equal to the MLE estimator, since it effectively ignores a logarithmic term involving the variance matrix that is in the likelihood function.) To find the distribution of the OLS estimator, define the $n \times n$ matrix:
$$\mathbf{M}(r) \equiv \begin{bmatrix}
0 & 0 & 0 & \cdots & 0 & 0 \\
-1 & r & 0 & \cdots & 0 & 0 \\
0 & -1 & r & \cdots & 0 & 0 \\
\vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\
0 & 0 & 0 & \cdots & r & 0 \\
0 & 0 & 0 & \cdots & -1 & r \\
\end{bmatrix}.$$
It can be shown that the event $\hat{\theta} \leqslant r$ is equivalent to the event $\mathbb{y}^\text{T} M(r) \mathbb{y} \geqslant 0$, so we have:
$$\begin{equation} \begin{aligned}
F_\hat{\theta}(r)
\equiv \mathbb{P}(\hat{\theta} \leqslant r)
&= \mathbb{P}(\mathbb{y}^\text{T} \mathbf{M}(r) \mathbb{y} \geqslant 0) \\[6pt]
&= \mathbb{P}((\mathbf{\Delta}(\phi) \mathbf{z})^\text{T} \mathbf{M}(r) (\mathbf{\Delta}(\phi) \mathbf{z}) \geqslant 0) \\[6pt]
&= \mathbb{P}(\mathbf{z}^\text{T} \mathbf{\Delta}(\phi) \mathbf{M}(r) \mathbf{\Delta}(\phi) \mathbf{z} \geqslant 0) \\[6pt]
&= \mathbb{P}(\mathbf{z}^\text{T} \mathbf{H}(\phi, r) \mathbf{z} \geqslant 0), \\[6pt]
\end{aligned} \end{equation}$$
where $\mathbf{H}(\phi, r) \equiv \mathbf{\Delta}(\phi) \mathbf{M}(r) \mathbf{\Delta}(\phi)$. Hence, the OLS estimator has the density function:
$$f_\hat{\theta}(r) = P_2(\phi,r)
\quad \quad \quad
P(\phi,r) \equiv \mathbb{P}(\mathbf{z}^\text{T} \mathbf{H}(\phi, r) \mathbf{z} \geqslant 0). $$
Thus, the expected values is $\mathbb{E}(\hat{\theta}) = \int \limits r P_2(\phi,r) dr$.