You could explain that ANOVA is a decomposition of the data as components that correspond to different groups or variables or sources of variation. An example is
$$
{\tiny
\begin{pmatrix} 89 & 88 & 97 & 94 \\
84 & 77 & 92 & 79 \\
81 & 87 & 87 & 85 \\
87 & 92 & 89 & 84 \\
79 & 81 & 80 & 88
\end{pmatrix} =
\begin{pmatrix} 86 & 86 & 86 & 86 \\
86 & 86 & 86 & 86 \\
86 & 86 & 86 & 86 \\
86 & 86 & 86 & 86 \\
86 & 86 & 86 & 86
\end{pmatrix} +
\begin{pmatrix} \phantom{-}6 & \phantom{-}6 & \phantom{-}6 & \phantom{-}6 \\
-3& -3 & -3 & -3 \\
-1 & -1 & -1 & -1 \\
\phantom{-}2 & \phantom{-}2 & \phantom{-}2 & \phantom{-}2 \\
-4 & -4 & -4 & -4
\end{pmatrix} +
\begin{pmatrix} -2 & -1 & 3 & 0 \\
-2 & -1 & 3 & 0 \\
-2 & -1 & 3 & 0 \\
-2 & -1 & 3 & 0 \\
-2 & -1 & 3 & 0
\end{pmatrix} +
\begin{pmatrix} -1 & -3 & \phantom{-}2 & \phantom{-}2 \\
\phantom{-}3 & -5 & \phantom{-}6 & -4 \\
-2 & \phantom{-}3 & -1 & \phantom{-}0 \\
\phantom{-}1 & \phantom{-}5 & -2 & -4 \\
-1 & \phantom{-}0 & -5 & \phantom{-}6
\end{pmatrix}
}
$$
which represents observations from a two-way ANOVA design (without repliation), with rows and columns as the two groups. The algebraic model is
$$ y_{ti} = \mu + \beta_i + \tau_t + \epsilon _{ti} $$ and the corresponding data decomposition is calculated as
$$ y_{ti} = \bar{y} + \left\{\bar{y}_i-\bar{y}\right\} + \left\{ \bar{y}_t-\bar{y}\right\} +
\left\{y_{ti}-\bar{y}_i - \bar{y}_t +\bar{y}\right\}. $$
For one-way ANOVA an example is
$$
{\tiny
\begin{pmatrix} 62 & 63 & 68 & 56 \\
60 & 67 & 66 & 62 \\
63 & 71 & 71 & 60 \\
59 & 64 & 67 & 61 \\
& 65 & 68 & 63 \\
& 66 & 68 & 64 \\
& & & 63 \\
& & & 59
\end{pmatrix} =
\begin{pmatrix} 64 & 64 & 64 & 64 \\
64 & 64 & 64 & 64 \\
64 & 64 & 64 & 64 \\
64 & 64 & 64 & 64 \\
& 64 & 64 & 64 \\
& 64 & 64 & 64 \\
& & & 64 \\
& & & 64
\end{pmatrix} +
\begin{pmatrix} -3 & 2 & 4 & -3 \\
-3 & 2 & 4 & -3 \\
-3 & 2 & 4 & -3 \\
-3 & 2 & 4 & -3 \\
& 2 & 4 & -3 \\
& 2 & 4 & -3 \\
& & & -3 \\
& & & -3
\end{pmatrix} +
\begin{pmatrix} \phantom{-}1 & -3 & \phantom{-}0 & -5 \\
-1 & \phantom{-}1 & -2 & \phantom{-}1 \\
\phantom{-}2 & \phantom{-}5 & \phantom{-}3 & -1 \\
-2 & -2 & -1 & \phantom{-}0 \\
& -1 & \phantom{-}0 & \phantom{-}2 \\
& \phantom{-}0 & \phantom{-}0 & \phantom{-}3 \\
& & & \phantom{-}2 \\
& & & -2
\end{pmatrix}
}%end tiny
$$ and the algebra can be written in the same way.
This is mostly a comment, since it is not a full explanation, but could be a helpful component of any explanation, and could be suited to the necessary level. Such tables is used a lot in this famous book.