We generate $n$ observations from 1D normal distribution. The observations are denoted as $x_1, x_2, \cdots, x_n$.
Given these observations, consider sequence $\mathbf{x} \in \mathbb{R}^n$:
$$\mathbf{x} = \begin{bmatrix} x_1 \\ x_1+x_2 \\ x_1+x_2+x_3 \\ \vdots \\ x_1+x_2+\cdots + x_n \end{bmatrix} $$
What will be the autocorrelation (and power density function) of this generated sequence $\mathbf{x}$?