How to generate an unbiased estimator for $e^{-\lambda}$ in Poisson distribution: $\frac{\lambda^k}{k!}{e^{-\lambda}}$
I tried: $$E[a^x]=\sum_{x=0}^\infty a^x\frac{1}{e^{\lambda}}\frac{\lambda^x}{x!}=\frac{1}{e^{\lambda}}\sum_{x=0}^\infty \frac{(a\lambda)^x}{x!}=e^{a\lambda-\lambda}=e^{\lambda(a-1)}$$ But here I cannot just let a=0. So I have to find other ways.
I prefer a deductive answer instead of a guessed one.
Furthermore, how to generate the UMVUE for it if possible? Thank you.