0

I got a formula: $$ s(b_1) = \sqrt{\frac{1}{n-2}·\frac{\sum{(y_i-\hat{y}_i)^2}}{\sum{(x_i-\bar{x})^2}}} $$ , is this correct? and how can I calculate the standard error of the intercept?

I am leanring R, When I execute the command "summary(lrfit)",it will give result as follow. I am interested how these values calculated...

Coefficients:
            Estimate Std. Error t value Pr(>|t|)    
(Intercept) 2.341231   1.096730   2.135 0.044170 *  
X0          1.615907   0.170735   9.464 3.25e-09 ***
X1          0.014385   0.003613   3.981 0.000631 ***
novice
  • 31
  • 1
  • Do these posts answer your question: https://stats.stackexchange.com/questions/44838/how-are-the-standard-errors-of-coefficients-calculated-in-a-regression?noredirect=1&lq=1, https://stats.stackexchange.com/questions/145571/standard-error-for-slope-intercept-estimate-in-linear-regression?rq=1, https://stats.stackexchange.com/questions/173468/how-to-get-the-standard-error-of-linear-regression-parameters?rq=1 ? – StubbornAtom Apr 16 '19 at 12:18
  • Yes, I got answer from link above, thanks. – novice Apr 19 '19 at 02:20

0 Answers0