Since we seek for a PDF in terms of $\theta$, terms other than $\theta$ can be fused into normalizing constant, which results in the following proportionality argument:
$$p(\theta|Y) = \frac{p(Y|\theta)p(\theta)}{p(Y)}\propto p(Y|\theta)p(\theta)$$
Substituting into RHS yields (let $m=[1,1,...,1]^T\rightarrow \lambda=m^T\theta$):
$$\begin{align}p(\theta|Y=y) &\propto \exp\left(-\frac{(y-m^T\theta)^2}{2\tau^2}\right)\exp\left(-\frac{1}{2}(\theta-\mu)^T\Sigma^{-1}(\theta-\mu)\right)\\ &\propto \exp\left(y\frac{m^T\theta}{\tau^2}-\frac{\theta^Tmm^T\theta}{2\tau^2}-\frac{\theta^T\Sigma^{-1}\theta-2\mu^T\Sigma^{-1}\theta}{2}\right) \\ & \propto \exp\left(-\frac{1}{2}\theta^T\left(\Sigma^{-1}+\frac{mm^T}{\tau^2}\right)\theta +\left(\frac{ym^T}{\tau^2}+\mu^T\Sigma^{-1}\right)\theta\right)\end{align}$$
And, this expression is in MV normal form, i.e. it is proportional to $$\exp\left(-\frac{1}{2}(\theta-\mu_{\theta})^T\Sigma_{\theta}^{-1}(\theta-\mu_{\theta})\right)\propto\exp\left(-\frac{1}{2}\theta^T\Sigma_{\theta}^{-1}\theta+\mu_{\theta}\Sigma_{\theta}^{-1}\theta\right)$$ So, we're just going to match term by term and obtain the covariance matrix and mean vector of $\theta$ posterior:
$$\Sigma_{\theta}=\left(\Sigma^{-1}+\frac{mm^T}{\tau^2}\right)^{-1}, \mu_{\theta}=\left(\frac{ym^T}{\tau^2}+\mu^T\Sigma^{-1}\right)\Sigma_{\theta}$$
Note: $mm^T$ is actually a matrix of only 1's.