Reconciling the answer by @Rscrill with actual discrete data, consider
$$\log(Y_t) = a\log(X_t) + b,\;\;\; \log(Y_{t-1}) = a\log(X_{t-1}) + b$$
$$\implies \log(Y_t) - \log(Y_{t-1}) = a\left[\log(X_t)-\log(X_{t-1})\right]$$
But
$$\log(Y_t) - \log(Y_{t-1}) = \log\left(\frac{Y_t}{Y_{t-1}}\right) \equiv \log\left(\frac{Y_{t-1}+\Delta Y_t}{Y_{t-1}}\right) = \log\left(1+\frac{\Delta Y_t}{Y_{t-1}}\right)$$
$\frac{\Delta Y_t}{Y_{t-1}}$ is the percentage change of $Y$ between periods $t-1$ and $t$, or the growth rate of $Y_t$, say $g_{Y_{t}}$. When it is smaller than $0.1$, we have that an acceptable approximation is
$$\log\left(1+\frac{\Delta Y_t}{Y_{t-1}}\right) \approx \frac{\Delta Y_t}{Y_{t-1}}=g_{Y_{t}}$$
Therefore we get
$$g_{Y_{t}}\approx ag_{X_{t}}$$
which validates in empirical studies the theoretical treatment of @Rscrill.