Consider the stepwise cumulative distribution function $$ \Delta(x; \lambda, \mu)=\sum_{j=1}^J \lambda_j 1\{x\geq \mu_j\} \hspace{1cm} \forall x \in \mathbb{R} $$ where
$J<\infty$
$\lambda\equiv (\lambda_1,...,\lambda_J)$
$\mu\equiv (\mu_1,...,\mu_J)$
$\mu_1<...<\mu_J$, $\mu_j\in \mathbb{R}$ $\forall j$
$\lambda_j\in [0,1]^J$ and $\sum_{j=1}^J \lambda_j=1$
Let $P(\cdot; \lambda,\mu)$ denote the probability mass function associated with the CDF $\Delta(\cdot; \lambda,\mu)$.
Consider the set $$ \Omega_J\equiv \{(\lambda, \mu): P(\cdot; \lambda,\mu) \text{ is symmetric}\} $$
Question: is it possible to explicitly characterise the set $\Omega_J$ through conditions on $(\lambda, \mu)$ for any generic $J$?
For example, $$ \Omega_2=\Big\{(\lambda,\mu): \lambda_1=1\text{ and }\lambda_2=0\text{, or }\lambda_1=0\text{ and }\lambda_2=1\text{, or } \lambda_1=1/2\text{ and }\lambda_2=1/2\Big\} $$
$$ \Omega_3=\Big\{(\lambda,\mu): \lambda_1=\lambda_3 \text{ and } \mu_2-\mu_1=\mu_3-\mu_2\text{, or } \lambda_j=0 \text{ for some $j\in \{1,2,3\}$} \Big\} $$ I'm struggling to generalise these characterisations to any $J$. Any help?