I have 2 independent RVs $s$ and $N$ with distribution as below:
$\begin{array} { c } { f _ { s } ( s ) = \frac { 1 } { \sqrt { 2 \pi \sigma ^ { 2 } } } e ^ { - s ^ { 2 } / 2 \sigma ^ { 2 } } } \\ { \text { and } } \\ { f _ { N } ( n ) = \left\{ \begin{array} { c l } { b e ^ { - b n } } & { n \geq 0 } \\ { 0 } & { \text { otherwise } } \end{array} \right. } \end{array}$
Now, I want to compute the distribution of $A S ^ { 2 } + n$?
Can anyone let me know how to solve for this?
My approach so far:
Condition on $s$ and evaluate the density of $A S ^ { 2 } + n$. Then multiply with density of $s$ and integrate out $s$.
But, I am not able to simplify it considerably. Can someone show how to solve this?