$X_i \stackrel{iid}{\sim} N(\mu,\sigma^2)$ i=1,2,...,n
$Z_n=\sqrt{n}(\bar{X} - \mu)$
I believe the asymptotic distribution of $Z_n$ is $N(0,\sigma^2)$.
So what would the asymptotic distribution of $5\bar{X}^7$ be?
$X_i \stackrel{iid}{\sim} N(\mu,\sigma^2)$ i=1,2,...,n
$Z_n=\sqrt{n}(\bar{X} - \mu)$
I believe the asymptotic distribution of $Z_n$ is $N(0,\sigma^2)$.
So what would the asymptotic distribution of $5\bar{X}^7$ be?
There is no need to appeal to asymptotic theory here, since the exact distribution of the sample mean is well-known when the underlying data is IID normal. If $X_1,...,X_n \sim \text{N}(\mu, \sigma^2)$ you have:
$$\bar{X} \sim \text{N} \Big( \mu, \frac{\sigma^2}{n} \Big).$$
Hence, using the rules for density transformation the density function for the transformed random variable $Y = 5 \bar{X}^7$ is:
$$\begin{equation} \begin{aligned} f_Y(y) dy &= f_\bar{X}(\bar{x}) \Bigg| \frac{dx}{dy} \Bigg| \\[6pt] &= f_\bar{X} \Big( (y/5)^{1/7} \Big) \cdot \frac{1}{35} (|y|/5)^{-6/7} \\[6pt] &= \frac{(|y|/5)^{-6/7}}{35} \cdot \sqrt{\frac{n}{2 \pi \sigma^2}} \cdot \exp \Big( -\frac{n}{2} \Big( \frac{y^{1/7} - 5 \mu}{5 \sigma} \Big)^2 \Big). \\[6pt] \end{aligned} \end{equation}$$