To see if this gets us anywhere useful, I'm going to go some of the way along the lines suggested by Glen_b in the comments. The characteristic function of the underlying random variables is:
$$\begin{equation} \begin{aligned}
\varphi_X(t) = \mathbb{E}(\exp(itX))
&= \int \limits_{\mathbb{R}} \exp(itx) f_X(x) dx \\[6pt]
&= \int \limits_{\mathbb{R}-(-1,1)} |x|^{-3} \exp(itx) dx \\[6pt]
&= \int \limits_{\mathbb{R}-(-1,1)} |x|^{-3} \cos(tx) dx + i \int \limits_{\mathbb{R}-(-1,1)} |x|^{-3} \sin(tx) dx \\[6pt]
&= \int \limits_{\mathbb{R}-(-1,1)} |x|^{-3} \cos(tx) dx \\[6pt]
&= - \int \limits_{-\infty}^{-1} \frac{\cos(tx)}{x^3} dx + \int \limits_1^\infty \frac{\cos(tx)}{x^3} dx \\[6pt]
&= 2 \int \limits_1^\infty \frac{\cos(|t|x)}{x^3} dx. \\[6pt]
\end{aligned} \end{equation}$$
Now, using the change of variable $y = x^{-2}$ we have $dy = -2 x^{-3} dx$ which gives:
$$\begin{equation} \begin{aligned}
\varphi_X(t)
&= \int \limits_0^1 \cos \Big( \frac{|t|}{\sqrt{y}} \Big) dy. \\[6pt]
\end{aligned} \end{equation}$$
We can see that the characteristic function is symmetric around $t=0$. Hence, without loss of information we can take $t>0$ and write it in simpler terms as:
$$\varphi_X(t) = \int \limits_0^1 \cos \Big( \frac{t}{\sqrt{y}} \Big) dy.$$
The required limit: Now we define the partial sums:
$$S_n = \frac{X_1 + \cdots + X_n}{\sqrt{2n \log n}}.$$
Using the rules for characteristic functions we then have:
$$\varphi_{S_n}(t)
= \varphi_X \Bigg( \frac{t}{\sqrt{2n \log n}} \Bigg)^n
= \Bigg[ \int \limits_0^1 \cos \Bigg( \frac{t}{\sqrt{2n}} \cdot \frac{1}{\sqrt{y \log n}} \Bigg) dy \Bigg]^n.$$
To prove the convergence result we have to show that $\lim_{n \rightarrow \infty} \varphi_{S_n}(t) = \exp( - t^2/2 )$. Using Bernoulli's expansion for $e$ it would be sufficient to prove that as $n$ becomes large we have:
$$\int \limits_0^1 \cos \Bigg( \frac{t}{\sqrt{2n}} \cdot \frac{1}{\sqrt{y \log n}} \Bigg) dy \longrightarrow 1 - \frac{t^2}{2n}.$$
I will not go any further than this for now. It is not clear to me whether this result holds, or how you would prove it, but at least this gets you to a possible pathway to a solution. To prove this limit, you would need to find some useful expansion of the integrand that will ensure that higher-order terms vanish in the integral as $n \rightarrow \infty$.