I have a gaussian random variable $\xi \sim \mathcal{N} (\mu,\sigma^2)$, and the following function $g(\xi)$: \begin{equation} g(\xi)=-( \xi +\textrm{b}^{\textrm{T}} x) + \left\lVert{\begin{matrix} \xi +\textrm{c}^{\textrm{T}} x \\ \textrm{d}^{\textrm{T}}x \end{matrix}}\right\rVert \end{equation}
I need to obtain the mean and standard deviation of $g(\xi)$. I know that I can calculate them using the definitions: \begin{equation} \operatorname{E} [g(\xi)]=\int_{-\infty}^{\infty} g(\xi) f(\xi) \,d\xi \end{equation} \begin{equation} \operatorname{Var}[g(\xi)]=\textrm{E} [(g(\xi)-\textrm{E}[g(\xi)])^2] \end{equation}
But this method is quite cumbersome. Is there any other method I can use?