I am trying to optimize a panel regression $G=\beta G+e$. $G \in R^{N\times T}$. $\beta\in R^{N\times N}$ is unknown coefficient, constrained to $diag(\beta)=0$, and reduced rank $rank(\beta)\leq r$. Formally, \begin{eqnarray} \begin{aligned} & \underset{\beta}{\text{min}} \left\Vert G-\beta G \right\Vert_F^2 \\ s.t. & \ diag(\beta)=0, \\ &rank(\beta)\leq r \end{aligned} \end{eqnarray}
Can someone give me some advice on this optimization problem? Thanks in advance!