This problem involves the application of a probability measure over a union of non-disjoint sets, and so it can be solved by application of the inclusion-exclusion rule.
To facilitate this analysis, we will let $\mathcal{A}(x) \equiv (-\infty, x]$ denote the real numbers up to $x$ so that $\mathcal{A}(x_1) -\mathcal{A}(x_0) = (x_0,x_1]$ is a bounded interval. (If you are dealing with a continuous random variable you do not have to worry about whether the ends of the intervals are open or closed.) We will also simplify the problem by using a slight abuse of notation, treating each $\mathcal{A}(x_i)$ as a subset of $\mathbb{R}^n$ with an upper bound in dimension $i$ and free in the other dimensions. This means that for an input vector $\mathbf{x} = (x_1,...,x_n)$ you have CDF values of the form:
$$\Phi(\mathbf{x}) = \mathbb{P} (\mathbf{X} \leqslant \mathbf{x}) = \mathbb{P} \Bigg( \bigcap_{k=1}^n \mathcal{A}(x_k) \Bigg).$$
You want to calculate the probability of a rectangular area, which can be written as an intersection of bounded intervals as $\mathcal{R}_n = \bigcap_{k=1}^n (\mathcal{A}(\bar{x}_{k}) -\mathcal{A}(\underline{x}_{k}))$, where you have lower and upper bounds $\underline{\mathbf{x}} < \bar{\mathbf{x}}$. You want to be able to write the probability of this rectangular event using your CDF $\Phi$. To apply the inclusion-exclusion rule we will let $\mathfrak{N}_k$ denote the class of all subsets of $\{ 1,...,n \}$ with exactly $k$ elements. Using this rule, and some other set algebra, we have:
$$\begin{equation} \begin{aligned}
\mathbb{P}(\mathcal{R}_n)
&= \mathbb{P} \Bigg( \bigcap_{k=1}^n (\mathcal{A}(\bar{x}_{k}) -\mathcal{A}(\underline{x}_{k})) \Bigg) \\[6pt]
&= \mathbb{P} \Bigg( \bigcap_{k=1}^n \mathcal{A}(\bar{x}_{k}) \Bigg) - \mathbb{P} \Bigg( \bigcap_{k=1}^n \mathcal{A}(\bar{x}_{k}) \cap \bigcup_{k=1}^n \mathcal{A}(\underline{x}_{k}) \Bigg) \\[6pt]
&= \mathbb{P} \Bigg( \bigcap_{k=1}^n \mathcal{A}(\bar{x}_{k}) \Bigg) -
\sum_{k=1}^n \Bigg[ (-1)^{k-1} \sum_{\mathcal{D} \in \mathfrak{N}_k} \mathbb{P} \Bigg( \bigcap_{i \notin \mathcal{D}} \mathcal{A}(\bar{x}_{i}) \cap \bigcap_{i \in \mathcal{D}} \mathcal{A}(\underline{x}_i) \Bigg) \Bigg] \\[6pt]
&= \Phi (\bar{\mathbf{x}}) -
\sum_{k=1}^n (-1)^{k-1} \sum_{\mathcal{D} \in \mathfrak{N}_k} \Phi(\mathbf{x_\mathcal{D}}), \\[6pt]
\end{aligned} \end{equation}$$
where the data vector $\mathbf{x}_\mathcal{D}$ uses the lower bounds $\underline{x}_i$ for all $i \in \mathcal{D}$ and the upper bounds $\bar{x}_i$ for all $i \notin \mathcal{D}$. This gives you a general mathematical form for calculating the probability of a rectangle directly using a multivariate CDF.
Special cases: Application of the general rule yields and expression with $2^n$ terms. For small $n$ we can write this out explicitly without using summation notation and it is not too long. For $n=2$ we get the special case:
$$\mathbb{P}(\mathcal{R_2}) = \Phi(\bar{x}_1, \bar{x}_2) -
\Phi(\underline{x}_1, \bar{x}_2) - \Phi(\bar{x}_1, \underline{x}_2) + \Phi(\underline{x}_1, \underline{x}_2).$$
For $n=3$ we get the special case:
$$\begin{equation} \begin{aligned}
\mathbb{P}(\mathcal{R_3}) &= \Phi (\bar{x}_1, \bar{x}_2, \bar{x}_3) -
\Phi(\underline{x}_1, \bar{x}_2, \bar{x}_3) - \Phi(\bar{x}_1, \underline{x}_2, \bar{x}_3) - \Phi(\bar{x}_1, \bar{x}_2, \underline{x}_3) \\[4pt]
&\quad + \Phi(\underline{x}_1, \underline{x}_2, \bar{x}_3) + \Phi(\underline{x}_1, \bar{x}_2, \underline{x}_3) + \Phi(\bar{x}_1, \underline{x}_2, \underline{x}_3) - \Phi(\underline{x}_1, \underline{x}_2, \underline{x}_3).
\end{aligned} \end{equation}$$
For larger $n$ the number of terms increases exponentially and so it becomes cumbersome to write the expression out without using the summation notation in the general form.