I am going to through the theory behind factor analysis models given here
Let's say our model is \begin{align} y_i = \mathcal \Lambda x_i +\epsilon, \end{align}
where $y_i$ is the $p$-dimensional observation and $x_i \in \mathcal N (0,I_q) $ is the q-dimensional underlying latent variable. $\Lambda $ is the loading matrix. $\epsilon \in \mathcal N(0,\Psi)$ is the error term.
Now I want to get the conditional expectation of latent variable $x$ given {$y,\Lambda,\Psi$}, i.e. \begin{align} p(x|y,\Lambda,\Psi) \end{align}
Here is my attempt: \begin{align} \Lambda x & = y - \epsilon \\ \implies \Lambda^{'}\Lambda x & = \Lambda^{'}(y - \epsilon) \\ \implies x & = (\Lambda^{'}\Lambda)^{-1}(\Lambda^{'}(y - \epsilon)) \\\end{align}
If I take the conditional expected value of $x$ now, I get \begin{align} E(x|y,\Lambda,\Psi)&= E((\Lambda^{'}\Lambda)^{-1}(\Lambda^{'}(y - \epsilon))) \\ E(x|y,\Lambda,\Psi)&= ((\Lambda^{'}\Lambda)^{-1}(\Lambda^{'}(y - E(\epsilon)))) \\ E(x|y,\Lambda,\Psi)&= (\Lambda^{'}\Lambda)^{-1}(\Lambda^{'}y) \\\end{align}
But, the expression given on Slide 18 in the above slides, the conditional expected value of $x$ reads something likes $Λ (ΛΛ^T+ Ψ)^ {−1}y$
Can you please point out the mistake I am doing in my derivation. Thanks in advance!