Let $A$ and $B$ be a random variables with continues PDF $f_A$ e $f_B$. Let $Y=A+B$ and let $\hat{A}(Y)=Y$ be an estimation of $A$. I have to evaluate expectation of the square of the estimation errorr $\tilde{A}(A,Y)=A-\hat{A}(Y)$, i.e. the MSE $$\mathbb{E}_{A,Y}[\tilde{A}^2]=\iint_{\mathbb{R}^2} (a-y)^2 f_{A,Y} (a,y) \text{ d}a\text{d}y$$ where $f_{A,Y}$ is the joint PDF of $A$ and $Y$.
Since $\tilde{A}(A,Y)=A-\hat{A}(Y)=-B$, I think $$\mathbb{E}_{A,Y}[\tilde{A}^2]=\mathbb{E}_B[B^2]$$ But is it correct my intuition? I'm not sure because in explicit terms $$\iint_{\mathbb{R}^2} (a-y)^2 f_{A,Y} (a,y) \text{ d}a\text{d}y=\int_\mathbb{R} b^2 f_B (b) \text{ d}b$$ is not clear if these two integrals gets the same value.