There is a little mistake in your statement, as your $s_t^2$, $t=0,1$, define the sum of squared residuals belonging to the two groups of observations. The formula you refer to (unless your textbook has a typo) defines $s_t^2$ as the estimate of the error variances of the two groups (which, under heteroskedasticity, are allowed to differ). Hence, they are defined as your quantities $s_t^2$ divided by $n_t$ - the average of the squared residuals.
Thus, we need to show that, in your notation,
$$
\widehat{\mathbb{V}_{\text{EHW}}}(\hat\beta|\mathbf{X})=\frac{s_0^2}{n_0^2}+\frac{s_1^2}{n_1^2}.
$$
First, from this answer, note that
$$
(\mathbf{X}^T\mathbf{X})^{-1}=
\frac{1}{n_0n_1}
\begin{pmatrix}
n_1&-n_1\\
-n_1&n_0+n_1
\end{pmatrix},
$$
where I have used $n=n_0+n_1$ and hence $nn_1-n_1^2=n_0n_1$. Next, the "meat" matrix of the sandwich is, in matrix notation,
$$
\sum_{i=1}^n\hat{\epsilon}_i^2\mathbf{X}_i\mathbf{X}_i^T=\mathbf{X}^T\Sigma_{\hat\epsilon}\mathbf{X},
$$
where $\Sigma_{\hat\epsilon}$ is a diagonal matrix with the squared OLS residuals $\hat{\epsilon}_i^2=I(T_i=t)(Y_i-\bar{Y}_t)^2$ on the main diagonal. Thus,
$$
\mathbf{X}^T\Sigma_{\hat\epsilon}\mathbf{X}=
\begin{pmatrix}
\sum_{i=1}^n\hat{\epsilon}_i^2&\sum_{i=1}^nI(T_i=1)\hat{\epsilon}_i^2\\
\sum_{i=1}^nI(T_i=1)\hat{\epsilon}_i^2&\sum_{i=1}^nI(T_i=1)\hat{\epsilon}_i^2
\end{pmatrix}
$$
which, as the total sum of squared residuals is of course nothing but the square of the sum of squares of the two subsamples, equals
$$
\mathbf{X}^T\Sigma_{\hat\epsilon}\mathbf{X}=
\begin{pmatrix}
s_0^2+s_1^2&s_1^2\\
s_1^2&s_1^2
\end{pmatrix}
$$
in your notation. Putting things together gives
$$
\begin{eqnarray*}
\widehat{\mathbb{V}_{\text{EHW}}}(\hat\alpha,\hat\beta|\mathbf{X})&=&(\mathbf{X}^T\mathbf{X})^{-1}\mathbf{X}^T\Sigma_{\hat\epsilon}\mathbf{X}(\mathbf{X}^T\mathbf{X})^{-1}\\
&=&
\frac{1}{n_0^2n_1^2}
\begin{pmatrix}
n_1&-n_1\\
-n_1&n_0+n_1
\end{pmatrix}
\begin{pmatrix}
s_0^2+s_1^2&s_1^2\\
s_1^2&s_1^2
\end{pmatrix}
\begin{pmatrix}
n_1&-n_1\\
-n_1&n_0+n_1
\end{pmatrix}
\end{eqnarray*}
$$
The $(2,2)$ element of that matrix (which corresponds to what we seek, i.e., $\widehat{\mathbb{V}_{\text{EHW}}}(\hat\beta|\mathbf{X})$) is, after direct multiplication,
$$
\frac{-n_1n_0s_1^2+n_1^2s_0^2+(n_0+n_1)n_0s_1^2}{n_0^2n_1^2}=\frac{n_1^2s_0^2+n_0^2s_1^2}{n_0^2n_1^2}.
$$
Here is a little illustration in R
:
library(sandwich)
library(lmtest)
n <- 10
y <- rnorm(n) # some dependent variable
x1 <- rbinom(n, size=1, p=.4) # a dummy regressor
n1 <- length(y[x1==1]) # the no. of y's belonging to T_i=1
n0 <- length(y[x1==0]) # the no. of y's belonging to T_i=0
reg <- lm(y~x1)
prepackaged <- coeftest(reg, vcov = vcovHC(reg, "HC0"))[2,2]^2 # square to get variance instead of standard error
s1.squared <- sum((y[x1==1] - mean(y[x1==1]))^2) # "your" s_1^2
s0.squared <- sum((y[x1==0] - mean(y[x1==0]))^2) # "your" s_0^2
sum.of.variances <- s1.squared/n1^2 + s0.squared/n0^2
X <- cbind(rep(1,n),x1)
matrix.formulation <- (solve(t(X)%*%X) %*% t(X)%*%diag(resid(reg)^2)%*%X %*% solve(t(X)%*%X))[2,2]
all.equal(prepackaged, sum.of.variances, matrix.formulation)
[1] TRUE