I am trying to create a model using the lmer
function. The model will contain the continuous response term "Average.profit" and explanatory terms "Type", "OtherType," and "Game" all 3 of which are binary. I also would like to include the two way interaction terms, these should have 4 possible levels {00,01,01,11}
all of which I am interested in,
As I would like to know if any of the 4 combinations increase or decrease "Average.profit". The model is below.
> m1<-lmer(Average.payoff~Game+Type+Others.Type+Type:Others.Type+Game:Others.Type+
Game:Type+(1|Subjects),REML=FALSE, data=Subjectsm1)
> m1
Linear mixed model fit by maximum likelihood
Formula: Average.payoff ~ Game + Type + Others.Type + Type:Others.Type +
Game:Others.Type + Game:Type + (1 | Subjects)
Data: Subjectsm1
AIC BIC logLik deviance REMLdev
54.47 69.67 -18.24 36.47 49.83
Random effects:
Groups Name Variance Std.Dev.
Subjects (Intercept) 0.025177 0.15867
Residual 0.122703 0.35029
Number of obs: 40, groups: Subjects, 20
Fixed effects:
Estimate Std. Error t value
(Intercept) 0.6545 0.1746 3.749
Game1 0.2492 0.2088 1.193
Type1 -0.1675 0.2088 -0.802
Others.Type1 -0.5242 0.2088 -2.511
**Type1:Others.Type1 -0.2983** 0.2261 -1.319
Game1:Others.Type1 0.4500 0.2685 1.676
Game1:Type1 0.1733 0.2261 0.767
Correlation of Fixed Effects:
(Intr) Game1 Type1 Oth.T1 T1:O.T G1:O.T
Game1 -0.718
Type1 -0.718 0.435
Others.Typ1 -0.718 0.531 0.435
Typ1:Oth.T1 0.389 -0.108 -0.542 -0.542
Gm1:Othr.T1 0.461 -0.643 -0.129 -0.643 0.000
Game1:Type1 0.389 -0.542 -0.542 -0.108 0.000 0.000
From my understanding the boldsection shows that when Type=1 AND OtherType=1 the response variable decreases by -0.2983 compared to any of the other combinations of type and others type ie. 00,01 or 10. How then do I know about the effect of any of the other combinations of Type and OtherType ie. Does 01 result in a higher response variable than 10?
If this can't be shown from this model what information can I infer about the interaction between Type and OthersType?