If a statistic $T$ is sufficient in the frequentist way, then $p(\mathbf{x} \mid \theta, t) = p(\mathbf{x} \mid t)$, so
\begin{align*}
p(\theta \mid \mathbf{x}, t) &= \frac{p(\mathbf{x}\mid t,\theta)p(t \mid \theta) p(\theta)}{p(\mathbf{x}\mid t)p(t)} \\
&= \frac{p(t \mid \theta) p(\theta)}{p(t)} \tag{freq. suff.}\\
&= p(\theta \mid t).
\end{align*}
On the other hand, if $T$ is sufficient in the Bayesian way, then
\begin{align*}
p(\mathbf{x} \mid \theta, t) &= \frac{p(\mathbf{x}, \theta,t)}{p(\theta,t)}\\
&= \frac{p(\theta \mid \mathbf{x},t) p(\mathbf{x},t)}{p(\theta\mid t)p(t)}\\
&= \frac{p(\mathbf{x},t)}{p(t)} \tag{Bayesian suff.}\\
&= p(\mathbf{x} \mid t).
\end{align*}
Regarding "predictive sufficiency," what's that?
Edit:
If you have Bayesian sufficiency, you have predictive sufficiency:
\begin{align*}
p(\mathbf{x}' \mid \mathbf{x}) &= \int p(\mathbf{x}' \mid \theta)p(\theta \mid \mathbf{x}) d\theta\\
&= \int p(\mathbf{x}' \mid \theta) p(\theta \mid t)d\theta \tag{Bayesian suff.}\\
&= p(\mathbf{x}' \mid t).
\end{align*}