I'm trying to prove the theorem below.
If $E(|X|^n)<\infty$ for some positive integer $n$, then $E(|X^k|)<\infty$ for every positive integer $k$ such that $k<n$
Here's what I've tried.
ref1) Proof that if higher moment exists then lower moment also exists
ref2) Probability and Statistical Inference, 2nd Edition Robert Bartoszynski, Magdalena Niewiadomska-Bugaj
[Step 1] set inequality about $|X|^k$ and $|X|^n$
if $|X|\ge1$, then $|X|^k\le|X|^n$, while if $|X|<1$, then $|X|^k\le1$.
consequently, $|X|^k \le \max(1, |X|^n) \cdots (1)$.
[Step 2] prove the right-hand side of (1) has finite expectation
if $E(|X|^n)<\infty$, then $E(|X|^n) = \int^{1}_{-1}|X|^nf(x)dx \;+\; \int_{|X|\ge1}|X|^nf(x)dx$
and it follows that $\int_{|x|\ge1}|x|^nf(x)dx<\infty$ as a difference of two finite quantities.
Thus, $E(|X|^k))\le E\left\{\max\left(1, |X|^n\right)\right\} = \int^{1}_{-1}f(x)dx \;+\; \int_{|X|\ge1}|X|^nf(x)dx < \infty$
[Question 1] In [Step 1], Why contains "=" in $|X|^k\le1$?
As I think, "If $|X| < 1$, then $|X|^k<1$" is right.
[Question 2] In [Step 2], what are 'two finite quantities' referring to?
$E(|X|^n)$ and $\int^1_{-1}|X|^nf(x)dx$?