Let $X_1$ and $X_2$ be i.i.d. continuous random variables with pdf $f(x) = 6x(1-x), 0<x<1$ and $0$, otherwise. Using Chebyshev's inequality, find the lower bound of $P\left(|X_1 + X_2-1| \le\frac{1}{2}\right)$
What I did: Using as Chebyshev's inequality, $P(|X-\mu|\ge a)\le \frac{\sigma^2}{a^2}$ Where $a=\frac{1}{2}$
Finding the variance: $E[X^2] - (E[X])^2$
$ E[X] = \int_{0}^{1} x6x(1-x) dx$ $=6\left[\frac{x^ 3}{3}-\frac{x^4}{4}\right]_0^1=6\left[\frac{1}{3}-\frac{1}{4}\right]= \frac{6}{12}=\frac{1}{2}$
$ E[X^2]= \int_{0}^{1}x^{2}6x(1-x)dx=6\left[\frac{x^ 4}{4}-\frac{x^5}{5}\right]_0^1=6\left[\frac{1}{4}-\frac{1}{5}\right]=\frac{6}{20}$
Therefore, $\sigma^2=\frac{6}{20}-\left(\frac{1}{2}\right)^2=\frac{1}{20}$
Putting in Chebyshev's inequality,
$\frac{\sigma^2}{a^2} $= $\left[\frac{\frac{1}{20}}{\left(\frac{1}{2}\right)^2}\right]$=$\frac{4}{20}=\frac{1}{5} $
But what we need is $\le \frac{1}{2}$ which we get by $1-\frac{1}{5}=\frac{4}{5}$,
But the answer is $\frac{3}{5}$
Where am I going wrong?