I have the following mixed models:
modeloIa<-lmer(log(FstPSAmm2+1)~AntherAreamm2+(1|plant), REML = F)
modeloIIa<-lmer(log(FstPSAmm2+1)~AntherAreamm2*color+(1|plant), REML = F)
modeloIIIa<-lmer(log(FstPSAmm2+1)~AntherAreamm2*color*FlPerBranch+(1|plant), REML = F)
modeloIVa<-lmer(log(FstPSAmm2+1)~color*AntherAreamm2*PlVoldm3+(1|plant), REML = F)
The first one is the null modell. The variable color is the fixed effect I want to test. FlPerBranch and PlVoldm3 are covariables.
How do I select the best model? How do I know if the variables are significant? These two questions are for me a dilemma.
If I use the AIC criterion I should select one model, but if I use the likelihood ratio test, starting from my null modell, I should select another. Any advice will help me a lot, thanks.